Main Injector H⁻ Injection

David Johnson

Fermilab Accelerator Advisory Committee May 10th – 12th, 2006

Outline

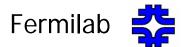
Goals & Strategy of Injection Design R & D

• MI H- Injection System

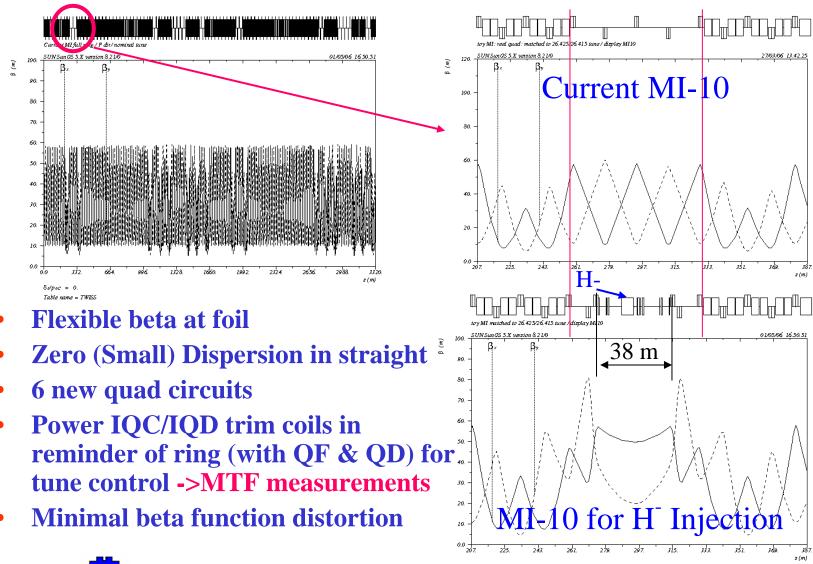
Conclusions

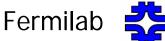
Goals of Injection Design R&D

- Produce a technically sound 8 GeV H- transport and injection design for the utilization of a 2 MW Superconducting Linac as an injector into the Main Injector in support of the High Intensity Neutrino Source (HINS) Program
- If there are delays in the effort "fast track" to the ILC due to either cost or R&D issues, we want to have all technical issues regarding transport & injection resolved so that construction could proceed rapidly.
- Generate a detailed Design Report and cost estimate for all required systems

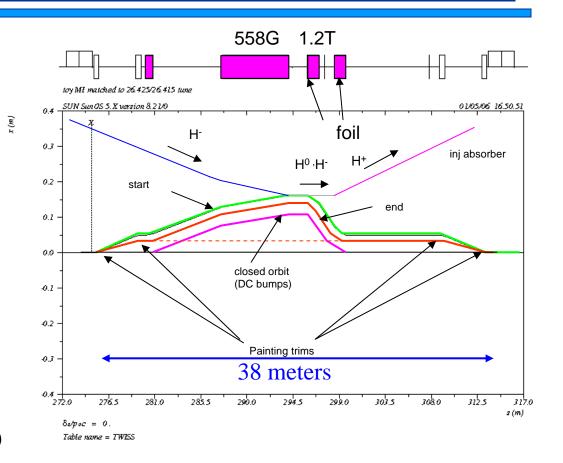

Strategy for Injection Design R&D

- Build upon previous design work by W. Chou, A. Drozhdin, and others.
- 2004 Workshop-> concluded that the design parameters were valid & performance could be reliably extrapolated from current experience
- Produce a conceptual design which addresses
 - the relevant technical issues (such as control of stripping losses in transport, collimation design, un-controlled losses during injection, foil issues (material, thickness, environment), longitudinal injection dynamics, and magnetic designs.
- Review the conceptual design to uncover any technical risks/design issues
 - Address these issues folding in new or updated information-> REVISE DESIGN
- Detail device design
- Produce final design document with cost estimate
- Other Steps to assure a successful Design
 - Collaboration with BNL
 - Review of current conceptual Design
 - Optimization of Foil-stripping Injection system
 - (Design & fabrication of Laser profile monitor system)
 - Additional system reviews as necessary
 - Learn from SNS experience (energy jitter, collimation success, foil & laser stripping)
 - Utilize expertise at FNAL from Accelerator, Technical, and Particle Phys. Div.

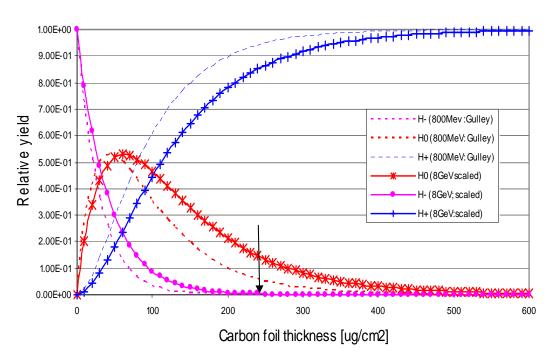



MI H- Injection System — Technical Issues

- Main Injector lattice modifications
- Design Concepts
- Optimization of Injection Layout
- Longitudinal Dynamics
- Detailed Design of Injection Components
- Injection Absorber Design


MI H- Injection System (MI modifications)

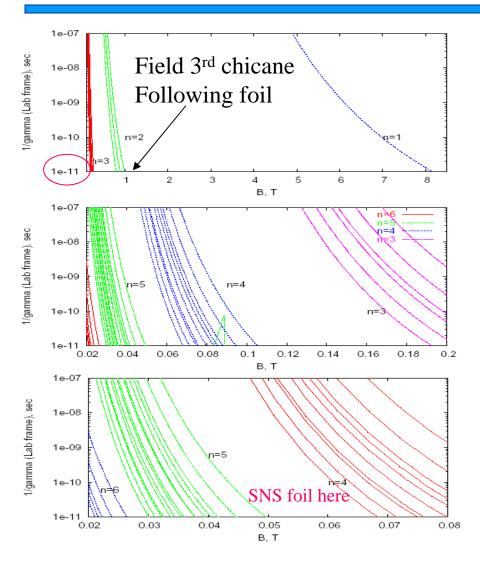
MI H- Injection System — Design Concepts


- Fixed Chicane bump
- Phase space painting
- Flexible injection optics in transport and ring
- Zero (small) dispersion in ring and <u>transport line</u>
- Parallel beams in ring and transport line @ foil $(\alpha = 0)$
- HB3 dipole separates H⁺, H0
- Utilize HB3 fringe field
 - for prompt conversion of excited H0 (n>=2) to protons (foil on rising field)
 - Lorentz stripping of Hmissing foil (lifetime ~E-11 s)
- Modification of MI
 - Allowed this design to proceed

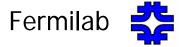
Production H⁰ and H⁻ by Stripping Foil

Carbon Stripping Foil Yield at 800 MeV and 8GeV

- Investigate additional measurements at 400 MeV & > 800 MeV to verify energy scaling and n=1,2° relative yields
 - FNAL (?) SNS Data (?)
 - BNL experiments

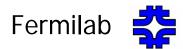


- 800 MeV data reported by Gulley, et.al scaled to 8 GeV by β^{-2} .
- This scaling matches data from FNAL @ 200 MeV
- Red curve probability of stripping to state n=1,2.
- Relative yield of n>=3 much smaller
- Mohagheghi, et.al. resolved relative yield for 800MeV between n=1 and 2 as 28 and 130, respectivly.


Implies at 250 ug/cm²

- 86% protons
- 11% H0(n=2)->strip to H+
- 03% H0(n=1)-> to absorber

Use of End Field for Control of Excited States



- Minimize probability for excited states being stripped outside the acceptance of the MI by downstream magnetic field -> leads to uncontrolled loss
- Data for lifetime of Stark states of 8 Gev H0 as a function of magnetic field corresponding to its rest frame electric field see by the atom.
- Calculations for 8 GeV were done by W.Chou, Alexandr Drozhdin and presented at the 2004 Workshop
- Path length for 1E-11 sec is approx 3 mm in lab frame
- For 2" fringe field -> 23.6T/m gradient -> $\Delta\theta$ ~7 μ r
 - Requires careful design of chicane magnet end fields

MI H- Injection System- Optimization

- Optimization of Foil-Stripping Injection System to maximize stripping efficiency and foil lifetime and minimize uncontrolled losses
 - Lattice functions of circulating and injected beam
 - Foil material, thickness, and support structure
 - Position / orientation of foil in Chicane #3 fringe field
 - Phase space painting strategies
- BNL Collaboration to provide assistance
- Utilize tracking program STRUCT (FNAL) and ORBIT (SNS implementation) for optimization
- Goal is to ultimately perform an end-to-end simulation with all known effects and errors (multiple codes)


MI H- Injection System- Longitudinal Dynamics

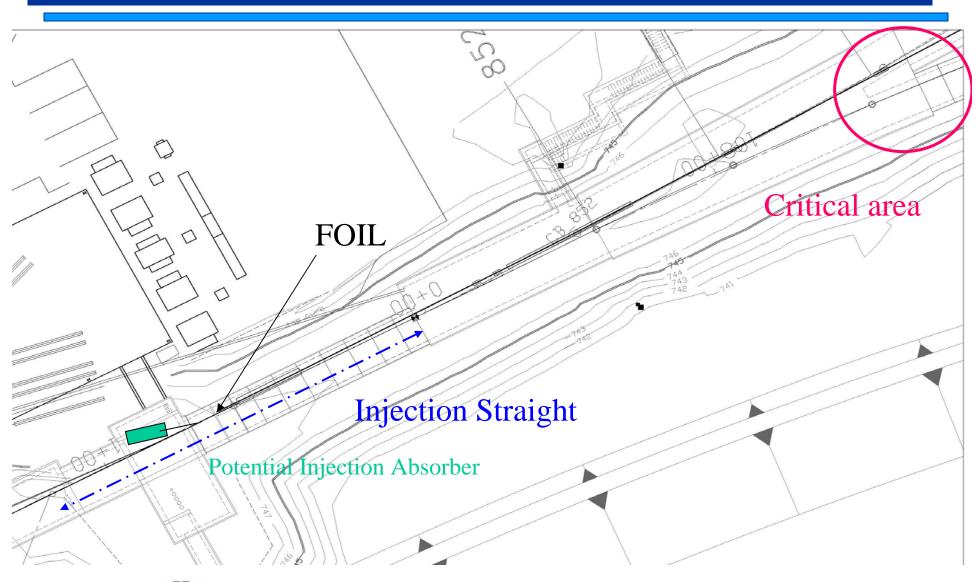
- Specifications on energy/phase jitter, excitation errors, etc. are defined by MI requirements
 - 325 Mhz chopper key to pseudo-synchronous transfers
 - Roughly 2 out of every six 325 Mhz bunches chopped
 - Turn by turn longitudinal distribution evolution
 - Initial ESME simulations with two RF freq systems included uniform distribution with space charge (Phil Yoon) 100% capture at 270 turns with PD bunch intensities
 - Ultimate ESME simulations must include 325 Mhz micro-bunch structure in MI 52.8Mhz bucket AND include space charge, beam loading, longitudinal impedances, instabilities, longitudinal painting, etc.
 - Simulations are on-going
 - Results feed back into specifications for T.L. de-buncher cavity
 - Data from SNS energy/phase jitter to be used for confirmation

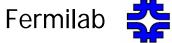
MI H- Injection System- Design of Injection Components

- Chicane dipole magnetic design (B~1.2T)
 - Wide aperture, gap consistent with remainder of MI (i.e. 2 inches)
 - End field shape and gradient important
 - Generate detailed field specifications for each magnet
 - 3D model
- Injection kicker dipole (ring & beam line)
 - Pure dipole (~2kG-m), 1kHz bandwidth
- Foil changer unit
- Electron catcher
- Status and strategy
 - Current design is conceptual (with basic param: 1, w ,g , B, end field, etc)
 - BNL Review of transfer line and injection conceptual design
 - As injection system matures, move into detailed magnetic design (2&3D)
 - Mechanical design and construction details

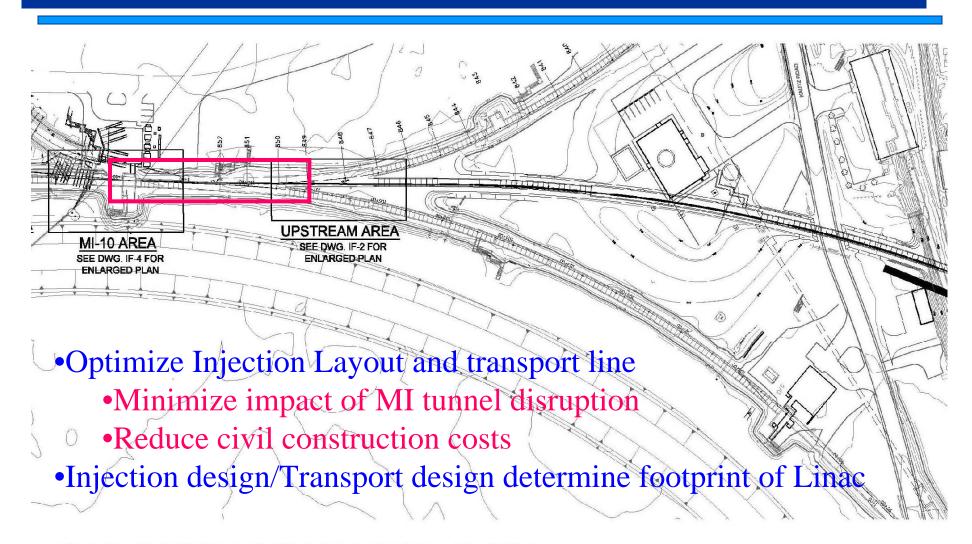
MI H- Injection System- Injection Absorber Design

- Specifications for beam power and shielding efficiency
 - Beams doc 2187 (power and Radiation Safety Guidelines)
- Shielding design (design underway)
 - Shielding materials (how compact: internal or external to tunnel)
 - Use MARS14 code for full scale Monte Carlo and e-m shower simulations in absorber, lattice elements, shielding, tunnel, and surrounding soil
- Mechanical Design (not yet started)
 - External shielding (based upon above design)
 - Corebox
 - Thermal considerations (cooling)
 - Stress wave considerations
 - Use ANSYS for detailed thermal and stress analysis
- Utilize FNAL Energy Deposition Group for shield design calculations
- Use experience from MI abort core box design, SNS absorber designs
- Utilize FNAL engineers with ANSYS and absorber design experience in mechanical design

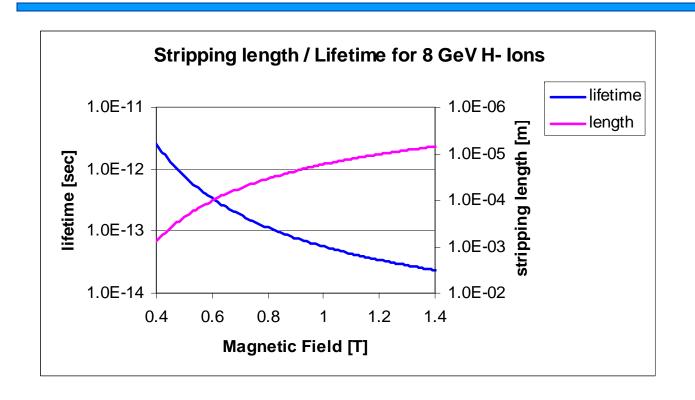


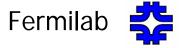

CONCLUSIONS

- Conceptual Design is maturing with critical parts moving forward so that major civil construction issues may be resolved.
- BNL Collaboration moving forward to:
 - Review current conceptual design
 - Aid in optimization of foil-stripping injection
 - Investigate the potential for future stripping experiments at energies of up to 2.5GeV
 - Produce a "laser profile monitor" for Meson test facility
- Although the design has developed substantially since the 2004 Workshop, the conclusions remain that although the injection design is not trivial, no fatal problems have been uncovered.

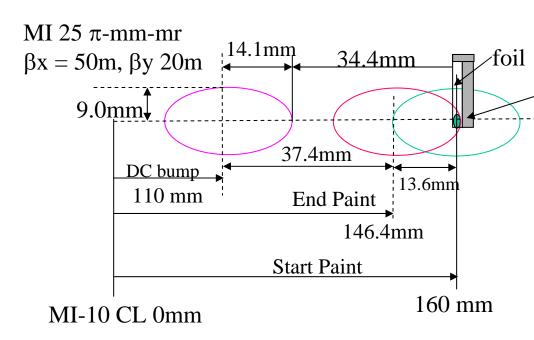


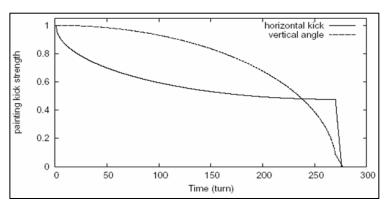
Interface with Main Injector


Civil Construction



PLAN - MAIN INJECTOR INTERFACE REGION




Lorentz stripping in Chicane

Painting Geometry

Linac 1.5 π -mm-mr $\beta x = 10m$, $\beta y = 20m$

 $3\sigma y +/- 2.1mm$ $3\sigma x +/- 1.5mm$

 $B = B_0 \left[C1 + C2 \left[1 - \sqrt{\frac{2N}{M} - (\frac{N}{M})^2} \right] \right]$

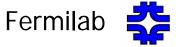
 $B = B_0 \left[C1 - \frac{N - M}{Q / C1} \right]$

C1= removal/total offset

C2 = paint dist/total offset

M = number of painting turns

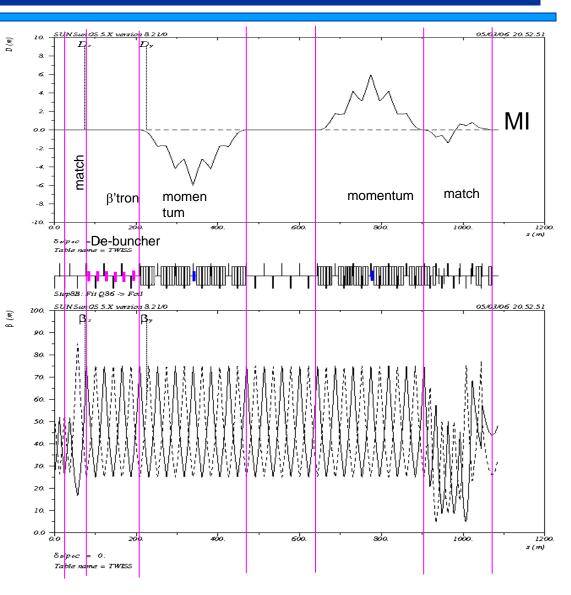
N = turn number

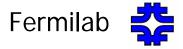

Q= number of turns to remove from foil

For this case:

$$C1 = 13.6$$

$$C2=34.7$$

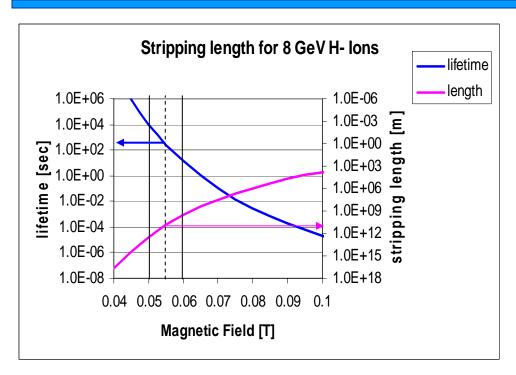

Total offset 50 mm



N < M

H- Transport Line — Current Status

- Footprint determined by MI Injection design
- 60 degree FODO lattice
- 2 achromatic bend sections for momentum collimation (550G) civil constraint
- Straight for β'tron collimation
- Straight section for debuncher/stretcher
- Achromatic matching into MI (wide tuning range in beta at foil, with alpha =0)
- Quad gradient +/- 10 kG/m
 -> 260 G @ 1"
- Aperture ratios 3σ/(w/2)
 - Dipole: H 8.5/95 ,V 8.5/22
 - Quad: H&V 8.5/38



H- Transport Line- Technical Issues

- Control of stripping losses in transport line (addressed in 2004 Workshop)
 - Lorentz stripping (next slide) beam power loss ~0.0016 W/m (@134 kW)
 - Black body radiation (H. Bryant, C. Hill) ~0.11 W/m
 - preliminary design of cold beam tube shield -> 0.0001 W/m
 - elliptical Al extrusion to fit inside 2X4 rectangular beam tube (1.75"x3.75")
 - Based on LHC cryostat shields cost ~ \$30K-ish
 - Vacuum stripping @ 10-7 to be $\sim 0.013 \text{ W/m} -> 0.002 \text{W/m}$)
- Collimation (transverse and longitudinal beam shaping & machine protection)
 - Betatron (utilize clever foil stripping system developed for SNS)
 - Initial simulations-> collimator jaws set at 4σ
 - Revisit simulations (using STRUCT and ORBIT)
 - Momentum (review in-line absorber design)
 - Adjustable aperture for both foil and absorber
 - Detailed foil stripper and absorber designs have not yet begun (AD EDG)
- Detail design of new transport magnets, vacuum system, instrumentation
 - No major technical issues anticipated

Lorentz Stripping

- Use expression from L.
 Scherk for rest frame lifetime of H- in applied magnetic field
- Calculate lab frame lifetime
 (βγτ) and stripping length
 (βγcτ)
- Basic eq. not in question

- At dipole field of 550 G Loss rate ~7.5E-9 /m
 - With 1.54E14/1.5 sec ~8E5 particles/m/s 0.001 W/m (comparable to vacuum with cold beam tube liner)
- At dipole field of 500 G Loss rate $\sim 3.8\text{E}-10 \text{ /m}$
 - With 1.54E15/1.5 sec ~ 3.9E4 particles/m/s 0.00005 W/m

